Гидрофобное покрытие. что это такое и как сделать своими руками?

Алан-э-Дейл       19.02.2024 г.

Оглавление

Сверхгидрофобность

Капля на поверхности Лотоса.

Сверхгидрофобные материалы имеют поверхности, чрезвычайно несклонные к смачиванию (с углом контакта с водой, превышающим 150°). Многие из подобных материалов, обнаруженных в природе, подчиняются закону Кассье и являются двухфазными на субмикронном уровне, причем одним из компонентов является воздух. Эффект лотоса основан на этом принципе. Примером сверхгидрофобного материала-биомиметика в нанотехнологии является нанопин-пленка (англ.)русск.. Показано, что поверхность пентоксида ванадия может переключаться между сверхгидрофобностью (англ.)русск. и сверхгидрофильностью под действием УФ излучения. Согласно этому исследованию, любую поверхность можно наделить подобным свойством путём нанесения на неё суспензии розеткообразных частиц V2O5, например, с помощью струйного принтера. Тут гидрофобность также вызывается межслойными воздушными полостями (разделёнными расстояниями 2.1 нм). Механизм действия УФ излучения состоит в создании пар «электрон-дырка», в которых дырки реагируют с атомами кислорода в кристаллической решетке, создавая кислородные вакансии на поверхности, а электроны восстанавливают V5+ до V3+. Кислородные вакансии закрываются водой и такое поглощение воды поверхности ванадия делает её гидрофильной. При продолжительном пребывании в темноте вода замещается кислородом и гидрофильность утрачивается.

Гидрофобный эффект с точки зрения статистической физики

Итак, зная Второй закон, мы понимаем, почему чашка чая на столе обязательно остынет до комнатной температуры, но никогда сама по себе не нагреется вновь, отобрав тепло у воздуха в кухне. (Если нет — то надо обязательно прочитать книгу Эткинса .) Но применимы ли те же самые рассуждения для объяснения, например, несмешиваемости воды и масла? Ведь Второй закон стремится «все уровнять», а вода с маслом, наоборот, отказываются растворяться друг в друге (рис. 2а).

Рисунок 2. Иллюстрация гидрофобного эффекта. а — Гидрофобный эффект (а по сути, Второй закон термодинамики) заставляет воду «отталкивать» неполярные молекулы (такие как масло) и уменьшать площадь контакта с ними. Из-за этого много маленьких капелек масла в воде в конечном итоге обязательно сольются вместе и образуют слой. б — Образование упорядоченного («льдистого») слоя молекул воды вблизи гидрофобной поверхности необходимо, чтобы молекулы воды могли формировать водородные связи друг с другом. Но это приводит к падению энтропии, невыгодному в связи со Вторым законом. в — Естественная возможность увеличить энтропию — снизить площадь контакта гидрофобных молекул с водой, что и происходит при агрегации нескольких неполярных молекул между собой. В случае амфифильных молекул появляется самоорганизация и формирование довольно сложных надмолекулярных структур, таких как мицеллы, бислои и везикулы (см. рис. 3).

(б и в)

И впрямь, если рассматривать только масло, то покажется, что термодинамика не работает: растворение масляной пленки в толще жидкости явно увеличило бы энтропию по сравнению с монослоем. Но все знают, что на самом-то деле происходит все наоборот: даже если воду с маслом встряхнуть, эмульсия через какое-то время распадется, и масло опять образует пленку, покинув водную фазу.

Дело в том, что вода в этом примере — равноправный участник рассматриваемой системы, и ее ни в коем случае нельзя упускать из виду. Как известно, свойства воды (даже ее жидкое состояние в нормальных условиях) обусловлены способностью образовывать водородные связи. Каждая молекула воды может формировать до четырех связей с «соседками», но для этого вода должна находиться «в воде». В случае присутствия в воде неполярной поверхности, примыкающие к ней молекулы перестают чувствовать себя «свободно»: для того, чтобы сформировать желаемые водородные связи, этим молекулам приходится ориентироваться строго определенным образом, формируя «льдистую» оболочку (рис. 2б) вокруг гидрофобного объекта. Это вынужденное упорядочивание характерно существенным падением энтропии системы масло—вода, что и вынуждает гидрофобные молекулы агрегировать между собой, уменьшая площадь контакта с полярной средой, а значит, и невыгодное снижение энтропийного фактора . Фактически, это вода заставляет масло сливаться в одну большую каплю или пятно, реализуя диалектический принцип «подобное к подобному».

Водопроницаемость

Когда материал пропускает воду под напором — это называется водопроницаемость. В зависимости от строения различают водонепроницаемость. Строение бывает очень плотное и с мелкими порами. И те, и другие материалы считаются водонепроницаемыми. Испытать на водонепроницаемость возможно только на специальном оборудовании.

Проверка проходит таким образом:

  • положить образец в коническую металлическую форму;
  • бока материала залить парафином;
  • подать снизу воду под сильным напором;
  • собрать в стакан все количество воды, которое пройдет через материал на другую сторону, и взвесить ее.

Для веществ, которые используют для перекрытий помещений (рубероид, черепица), влагонепроницаемость важнее всего.

Что такое гидрофобный бетон

Устойчивый к воздействию влаги бетон представляет собой особый вид строительного материала с загерметизированными порами и капиллярными каналами. Отсутствие полостей, способствующих проникновению вглубь массива влаги, повышает влагостойкость бетона. На лексиконе профессиональных строителей, материал, обработанный специальными пропитками (гидрофобизаторами), называется гидрофобным.

Бетон (даже непористой структуры) всегда имеет небольшое количество микроскопических пор и трещин

Он характеризуется:

  • увеличенным удельным весом;
  • повышенной стойкостью к поверхностному воздействию влаги;
  • устойчивостью к проникновению грунтовых вод и осадков вглубь массива.

Согласно требованиям государственного стандарта, различные виды бетона по способности противостоять проникновению влаги делятся на классы. Нормативный документ предусматривает классификацию бетона буквенно-цифровым индексом, включающим заглавную латинскую букву W и четную цифру от двух до двадцати. Цифровой показатель характеризует давление водяного столба, которое способен воспринимать бетонный массив.

С увеличением цифрового значения возрастают гидрофобные свойства, что сказывается на стоимости материала. Водостойкость бетона определяет область использования материала:

  • в частном домостроении применяется стройматериал с маркировкой W4, W6. Наиболее популярен бетон с маркировкой W6. Он используется, когда осуществляется строительство домов, бани, сауны и бассейна;
  • материал с уровнем влагостойкости W8 обладает высокой водопроницаемостью, однако требует дополнительной гидроизоляционной защиты. Он широко применяется при бетонировании фундаментных оснований;
  • близкое расположение водоносных слоев требует применения составов с повышенным уровнем влагостойкости W10–W12. Они используются также для фасадного оштукатуривания стен зданий;
  • бетонные растворы марки W14–W20 самые дорогие. Они отличаются повышенной водонепроницаемостью, используются для постройки объектов гидротехнического назначения.

Сверхгидрофобность

Капля на поверхности Лотоса.

Сверхгидрофобные материалы имеют поверхности, чрезвычайно несклонные к смачиванию (с углом контакта с водой, превышающим 150°). Многие из подобных материалов, обнаруженных в природе, подчиняются закону Кассье и являются двухфазными на субмикронном уровне, причем одним из компонентов является воздух. Эффект лотоса основан на этом принципе. Примером сверхгидрофобного материала-биомиметика в нанотехнологии является нанопин-пленка (англ.)русск.. Показано, что поверхность пентоксида ванадия может переключаться между сверхгидрофобностью (англ.)русск. и сверхгидрофильностью под действием УФ излучения. Согласно этому исследованию, любую поверхность можно наделить подобным свойством путём нанесения на неё суспензии розеткообразных частиц V2O5, например, с помощью струйного принтера. Тут гидрофобность также вызывается межслойными воздушными полостями (разделёнными расстояниями 2.1 нм). Механизм действия УФ излучения состоит в создании пар «электрон-дырка», в которых дырки реагируют с атомами кислорода в кристаллической решетке, создавая кислородные вакансии на поверхности, а электроны восстанавливают V5+ до V3+. Кислородные вакансии закрываются водой и такое поглощение воды поверхности ванадия делает её гидрофильной. При продолжительном пребывании в темноте вода замещается кислородом и гидрофильность утрачивается.

Виды

Пропитка для бетона классифицируется по используемым компонентам:

  1. Органическая упрочняющая смесь — жидкость на основе акрила, полиуретана, эпоксидных смол. Самая известная марка — Пробетил. Их принцип действия основан на заполнении пор вяжущим веществом, что придает поверхности водоотталкивающие свойства, высокие прочностные параметры, сопротивляемость к воздействию агрессивных сред и оседанию пыли. Полиуретановая смесь универсальна, остальные имеют свою специфику.
  2. Неорганические укрепители, силикатные вещества или флюаты, которые не заполняют микропоры, а взаимодействуют с поверхностными молекулами бетонного камня. В результате поверхностный слой наделяется инерцией по отношению к любому типу воздействий.

По области применения

Классификация пропиток по сфере использования осуществляется согласно типу эксплуатации обрабатываемого объекта. Специфичный продукт — глубокая пропитка бетона — предлагается для промышленных сооружений, общественных мест с высокой проходимостью, СТО, парковок, гаражей. Специальные влагозащитные смеси или гидрофобизаторы применяются при строительстве бассейнов, нефтехранилищ, открытых площадок. Для заливки стяжек рекомендуются пропитки для бетонного пола.

По принципу действия

Способ воздействия на структуру бетонного камня у пропиток различен:

  1. Материалы глубокого проникновения, такие как силикаты, силаны, силаксины, обеспечивают качественное флюатирование бетона. Герметики проникают в поры и реагируют с молекулами извести, усиливая кристаллизацию кальция в извести. Следовательно, флюаты обеспечивают прочность поверхности изнутри.
  2. Жидкие составы создают тонкую защитную пленку. Примером являются акриловая, полиуретановая и эпоксидная смесь. Они обеспечивают обеспыливание бетона, защиту от сырости, повышают прочность.

По основным свойствам

Выбирать пропитку нужно исходя из характеристик, конечного результата и цены.

Каждое средство наделено определенными свойствами, обеспеченными ингредиентами, используемыми для приготовления:

  • Эпоксидными пропитками обрабатывают бетоны для обеспечения защиты от влаги. Материал изготавливается из натуральных компонентов и является эффективным герметиком.
  • Тонеры применяются для придания поверхности блеска или определенного оттенка.
  • Полиуретановые пропитки наиболее популярны при изготовлении стяжек. Материалы придают поверхности стойкость к морозам, влаге, тяжелым нагрузкам. Широко используется Пробетил.
  • Неорганические флюаты препятствуют износу, повышают прочность. Флюатами укрепляют бетонную поверхность на большую глубину. Широко пользуются флюатами для укрепления полос аэродромов.
  • Акриловые пропитывающие смеси отличаются низкой стоимостью, слабой эффективностью. Применяются для укрепления полов и стен в квартире, ненагруженных конструкций.
  • Силиконовая смесь наделена водоотталкивающими свойствами, обеспечивает долговечность до 10 лет. Силиконовые смеси являются идеальной защитой открытых поверхностей от дождя и снега.

По функциональности

Функциональность позволяет обеспечить бетон определенными качествами. Увеличивают морозостойкость, выносливость к истиранию, химическим и климатическим воздействиям готового изделия за счет повышения пластичности раствора. Отдельным классом являются пропитки, с помощью которых осуществляется обеспыливание бетона.

Цветные средства, помимо прочности, придают бетонной поверхности конкретный цвет. Тонеры проникают на глубину 3 мм, что обеспечивает высокую стойкость цвета при интенсивной эксплуатации конструкции на солнце. После того, как нанесена цветная смесь, рекомендуется покрыть бетон гидрофобизатором.

Свойства гидрофобизаторов

Гидрофобизаторы — продукты химической промышленности, помогающие сохранить свойства здания, в том числе изоляционного слоя, продлевают срок службы построек.

Как известно, бетон способен накапливать влагу. Когда температура на градуснике опускается ниже нулевой отметки, проникшая в толщу вода расширяется в объеме до 9%. Тем самым осуществляет давление на стены изнутри. В результате этого возникают микроскопические трещины. Таким образом теплоизоляционные свойства здания ухудшаются. Обработка же такими составами помогает устранить влагу в бетоне. В результате потери тепла снижаются более чем в 10 раз.

Под действием влаги и температурных перепадов в бетоне образуются микротрещины

За счет чего достигается эффект?

Гидрофобизаторы наделяют бетон такими свойствами:

  • паропроницаемость материала снижается на 10-15%, что не создает благоприятных условий для образования грибка и плесени;
  • защищает поверхность от оседания пыли и загрязнений;
  • внешний вид конструкции не меняется, а иногда даже улучшается;
  • повышается морозоустойчивость конструкции;
  • создается дополнительная защита металлической арматуры от коррозии;
  • не допускается образования высолов.

Многие продукты действуют долговременно. Некоторые производители гарантируют гидрофобность бетона в течение 10 лет. И только по истечении этого времени необходимо будет возобновить покрытие. При использовании объемной, или глубинной пропитки, водонепроницаемость сохраняется весь срок эксплуатации здания.

Часто применяют пропитки для тротуарной плитки, которая подвергается не только воздействию влаги, но и сильным механическим нагрузкам. Особенно страдает этот материал зимой. Так, на пример, на ее поверхности возникает наледь, что нередко приводит к деформации плитки и образованию сколов.

Гидрофобизаторы помогают предупредить проступание высолов

Гидрофобные растворы не представляют опасности для человека, животных и окружающей среды. Они не разрушаются под воздействием температурных колебаний, солнечного света, дождя и снега.

Среди преимуществ использования гидрофобизаторов — экономия лакокрасочных материалов и грунтовок. При этом упрощается процесс гидроизоляции бетонных элементов здания. Поверхность, обработанная таким составом, довольно быстро сохнет после дождя.

Выпускаются гидрофобизаторы для бетона в виде концентрата, подлежащего разведению, или как растворы, полностью готовые к применению, в других формах.

Гидрофобизаторы помогают защитить фасады от рук вандалов

На сегодняшний день известно десятки видов этого вида продукта. Условно их делят по таким признакам:

  • способ обработки бетона;
  • агрегатное состояние;
  • действующее вещество.

Как работают гидрофобизаторы?

Все зависит от того, как использовали продукт. При внешней обработке на поверхности бетона образуется пленка. Это тончайшее покрытие незаметно глазу, но при надежно запечатывающее капилляры строительного материала.

Химические основы

Согласно термодинамике, материя стремится к состоянию с минимальной энергией, а связывание понижает химическую энергию. Молекулы воды поляризованы и способны образовывать между собой водородные связи, чем объясняются многие уникальные свойства воды. В то же время, гидрофобные молекулы не поляризованы и не способны образовывать водородные связи, поэтому вода отталкивает такие молекулы, предпочитая образовывать связи внутри себя. Именно этот эффект определяет гидрофобное взаимодействие, называемое так не совсем корректно, так как его источником является взаимодействие гидрофильных молекул воды между собой. Так, две несмешивающиеся фазы (гидрофильная и гидрофобная) будут находиться в таком состоянии, где поверхность их контакта будет минимальной. Данный эффект можно наблюдать в явлении разделения фаз, происходящем, например, при расслоении водно-масляной эмульсии.

Самостоятельная обработка гидрофобным составом — пошаговая инструкция

При работе с гидрофобизаторами придерживаются следующих правил:

  • средства наносят на сухой, чистый бетон, слоев может быть один или несколько;
  • работы рекомендуется выполнять при температуре 5…25 °С;
  • не следует проводить обработку при повышенной влажности;
  • первую обработку рекомендуется проводить сразу после завершения облицовки;

Чтобы покрытие лучше выполняло свои функции, предварительно рекомендуется использовать грунтовки, что обеспечит лучшее сцепление.

Инструменты, которые потребуются для работы по гидрофобизации покрытия

Шаг 1. Тщательно очищаем и просушиваем поверхность бетона от посторонних образований — плесени, жира, ржавчины, высолов. Для этого используются специальные растворы — флюаты, разведенные пополам с водой. Обрабатывают поверхность 1–2 раза. Между слоями выдерживают паузу 7 ч.

Обработка поверхности

Шаг 2. Для удаления грибка, плесени, используют биоциды.

Высохшая стена

Шаг 3. Готовим раствор, если продукт надо развести водой.

Обработка раствором с помощью кисточки

Шаг 4. Наносим состав кисточкой. На поверхностях с большой площадью используют краскопульты.

Обработка краскопультом

Цены на распылители для красок

Краскопульт

Для нанесения пропитки используют кисти с синтетическим ворсом средней длины. Благодаря кисти пропитка распределяется ровным слоем.

Сверхгидрофобность

Капля на поверхности Лотоса.

Сверхгидрофобные материалы имеют поверхности, чрезвычайно несклонные к смачиванию (с углом контакта с водой, превышающим 150°). Многие из подобных материалов, обнаруженных в природе, подчиняются закону Кассье и являются двухфазными на субмикронном уровне, причем одним из компонентов является воздух. Эффект лотоса основан на этом принципе. Примером сверхгидрофобного материала-биомиметика в нанотехнологии является нанопин-пленка (англ.)русск.. Показано, что поверхность пентоксида ванадия может переключаться между сверхгидрофобностью (англ.)русск. и сверхгидрофильностью под действием УФ излучения. Согласно этому исследованию, любую поверхность можно наделить подобным свойством путём нанесения на неё суспензии розеткообразных частиц V2O5, например, с помощью струйного принтера. Тут гидрофобность также вызывается межслойными воздушными полостями (разделёнными расстояниями 2.1 нм). Механизм действия УФ излучения состоит в создании пар «электрон-дырка», в которых дырки реагируют с атомами кислорода в кристаллической решетке, создавая кислородные вакансии на поверхности, а электроны восстанавливают V5+ до V3+. Кислородные вакансии закрываются водой и такое поглощение воды поверхности ванадия делает её гидрофильной. При продолжительном пребывании в темноте вода замещается кислородом и гидрофильность утрачивается.

Химические основы

Согласно термодинамике, материя стремится к состоянию с минимальной энергией, а связывание понижает химическую энергию. Молекулы воды поляризованы и способны образовывать между собой водородные связи, чем объясняются многие уникальные свойства воды. В то же время, гидрофобные молекулы не поляризованы и не способны образовывать водородные связи, поэтому вода отталкивает такие молекулы, предпочитая образовывать связи внутри себя. Именно этот эффект определяет гидрофобное взаимодействие, называемое так не совсем корректно, так как его источником является взаимодействие гидрофильных молекул воды между собой. Так, две несмешивающиеся фазы (гидрофильная и гидрофобная) будут находиться в таком состоянии, где поверхность их контакта будет минимальной. Данный эффект можно наблюдать в явлении разделения фаз, происходящем, например, при расслоении водно-масляной эмульсии.

Материалы и их водопоглощение

Водопоглощение это свойство, когда материал способен поглощать влагу, а также удерживать ее. Показатель водопоглощения определяют за разницей веса. Сначала взвешивают сухой образец, а потом пропитывают его водой и тоже взвешивают. Разница в массе и будет этим показателем. Материал насыщается влагой до того, как заполняются все поры в местах, куда трудно попасть. Методы насыщения вещества регулируются ГОСТом.

Пределы водопоглощения очень большие в зависимости от строительного материала и какая есть гидрофобная поверхность.

Процентное отношение водопоглощения некоторых материалов:

  • гранит- 0,7%;
  • керамическая плитка-2%;
  • гидроизоляция-2%;
  • кирпич обыкновенный-20%;
  • бетон массой до 2,5 т-3%.

Насыщают материал таким образом: в кипящую воду частями загружают испытуемый образец. Он некоторое время стоит в этой воде. При таком испытании у материала происходят следующие изменения:

  • увеличивается: вес, объем и теплопроводность
  • уменьшается прочность

Для получения более точных данных, нужно тестировать материалы и в сухом и в насыщенном состоянии. Такой анализ поможет точнее предсказать как поведет себя той или иной материал при контакте с водой или влагой.

Коэффициент размягчения — это взаимоотношение данных теста над материалом в двух состояниях: сухом и насыщенном.

Химические основы

Согласно термодинамике, материя стремится к состоянию с минимальной энергией, а связывание понижает химическую энергию. Молекулы воды поляризованы и способны образовывать между собой водородные связи, чем объясняются многие уникальные свойства воды. В то же время, гидрофобные молекулы не поляризованы и не способны образовывать водородные связи, поэтому вода отталкивает такие молекулы, предпочитая образовывать связи внутри себя. Именно этот эффект определяет гидрофобное взаимодействие, называемое так не совсем корректно, так как его источником является взаимодействие гидрофильных молекул воды между собой. Так, две несмешивающиеся фазы (гидрофильная и гидрофобная) будут находиться в таком состоянии, где поверхность их контакта будет минимальной. Данный эффект можно наблюдать в явлении разделения фаз, происходящем, например, при расслоении водно-масляной эмульсии.

Немного термодинамики

Термодинамика — одна из первых наук, перебросивших мостки между микроскопическим миром атомов и молекул и «нашим», макроскопическим миром. Ее рождение связывается с изучением работы паровых машин и именем Николá Карно (1796–1832), в честь которого названы термодинамические циклы, определяющие количество работы, которое может произвести машина. Его дело продолжили Джоуль, Кельвин и Клаузиус, которые подвели под эту первоначально сугубо практическую область мощную теоретическую базу.

Несмотря на всю таинственность понятия энтропии, смысл Второго закона достаточно прост: если система изолирована (то есть, не обменивается с внешним миром ни веществом, ни энергией), то она будет стремиться к состоянию термодинамического равновесия, — такому макросостоянию, которое реализуется максимально возможным числом микросостояний (другими словами, которое имеет максимальную энтропию). К примеру, разбившаяся чашка никогда вновь не склеится сама: начальное состояние (целая чашка) реализуется лишь одним способом (S=0), а вот конечное (расколотая чашка) — астрономически большим числом способов (S>>0). Поэтому, увы, в глобальной перспективе все чашки обречены. Объяснению Второго закона «для домохозяек» посвящена замечательная научно-популярная книга Питера Эткинса «Порядок и беспорядок в природе» .

Гость форума
От: admin

Эта тема закрыта для публикации ответов.